Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biodegradable spacer reduces the subacromial pressure: A biomechanical cadaver study.

Clinical Biomechanics 2018 Februrary
BACKGROUND: Failure after rotator cuff repair remains a major clinical problem and could be related to excessive pressures from the acromion. Previous studies with irreparable tears showed good clinical results of tendon healing with arthroscopic insertion of a protective biodegradable spacer balloon between the repaired tendon and the acromion. One hypothesis is that compression pressures on the repaired tendon will be reduced by the spacer. This cadaver study aimed to investigate the effects of this subacromial spacer on compression pressures over a repaired supraspinatus tendon in passive motion.

METHODS: Rotator cuff tear and repair were performed in six fresh-frozen cadaveric shoulders, followed by insertion of a biodegradable subacromial spacer. Specimens were tested using a passive shoulder simulator for abduction-adduction, flexion-extension and internal-external rotations. A sensor positioned below the acromion was used to measure compression pressure changes through passive range of motion before and after placement of a subacromial spacer. Peak pressures were measured in adduction-abduction motion, near 90° abduction.

FINDINGS: Both the mean and peak pressures in abduction-adduction were significantly reduced after insertion of the subacromial spacer (from mean 121.7 (SD 9.5) MPa to 51.5 (SD 1.2) MPa and from peak 1749.6 (SD 80.7) MPa to 535.1 (SD 27.6) MPa) (P<0.0001).

INTERPRETATION: The reduced peak pressures and wider load distributions over the sensor during both passive abduction-adduction and flexion-extension motions suggest that the use of the spacer will lead to reduced wear of the repair in patients, and potentially prevent rotator cuff re-tear after surgical repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app