Add like
Add dislike
Add to saved papers

Long non-coding RNA H1 promotes cell proliferation and invasion by acting as a ceRNA of miR‑138 and releasing EZH2 in oral squamous cell carcinoma.

Long non-coding RNAs (lncRNAs) have been shown to play pivotal roles in various types of human cancer, including oral squamous cell carcinoma (OSCC). However, the potential mechanisms of action of lncRNAs in OSCC remain to be fully elucidated. The aim of the present study was to further explore the potential mechanisms of action of lncRNAs in OSCC. We first analyzed Gene Expression Omnibus (GEO) datasets to investigate aberrantly expressed lncRNAs which may be involved in the development of OSCC. Reverse transcription‑quantitative PCR (RT‑qPCR) was performed to analyze the expression levels of lncRNA H19. In addition, the correlation between H19 expression and the clinical characteristics and prognosis of patients with OSCC was statistically analyzed. The effects of H19 expression on OSCC cells were examined by using overexpression and RNA interference approaches in vitro and in vivo. To examine the competitive endogenous RNA (ceRNA) mechanisms, bioinformatics analysis and luciferase reporter assay were performed. In addition, the correlation between H19 and microRNA (miR)‑138 was detected. H19 was found to be upregulated in OSCC tissues and its high expression level was associated with the TNM stage and nodal invasion, and also correlated with a shorter overall survival of patients with OSCC. The knockdown of H19 significantly inhibited OSCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and induced apoptosis in vitro; it also suppressed subcutaneous tumor growth in vivo. In addition, H19 was found to regulate the expression of oncogene enhancer of zeste homolog 2 (EZH2) by competing with miR‑138; the inhibition of miR‑138 attenuated the inhibitory effects of H19 knockdown on OSCC cells. On the whole, our findings suggest that H19 functions as an oncogene by inhibiting miR‑138 and facilitating EZH2 expression in OSCC. Thus, lncRNA H1 may represent a potential therapeutic target for OSCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app