Add like
Add dislike
Add to saved papers

The coordination of joint movements during sit-to-stand motion in old adults: the uncontrolled manifold analysis.

OBJECTIVE: Sit-to-stand motion (STS) is a dynamic motion utilized in fundamental activities of daily living and requires extensive joint movement in the lower extremities and the trunk and coordination of multiple body segments. The present study aimed to investigate whether aging affects the motor coordination of joint movements required to stabilize the horizontal and vertical movement of center of mass using the uncontrolled manifold (UCM) analysis.

METHOD: We recruited 39 older adults with no musculoskeletal and/or neuromuscular conditions that affected STS, along with 21 healthy younger adults. All subjects performed five STS trials from a chair with the seat height adjusted to the length of their lower leg at a self-selected motion speed. Kinematic data were collected using a three-dimensional motion analysis system. We performed the UCM analysis to assess the effects of joint angle variance (elemental variable) to stabilize the horizontal and vertical movement of COM (performance variable) and calculated the joint angle variance that does not affect COM (VUCM ), the variance that affects COM (VORT ), and the synergy index (ΔV).

RESULTS: ΔV values in the horizontal direction were higher in the older adults than in the younger adults, but ΔV values in the vertical direction were lower in the older adults than in the younger adults.

CONCLUSION: Older adults require increasing levels of stabilization of horizontal movement of COM after buttocks-off in the STS maneuver. As a result, variance in the joint angle of the lower extremities indicated no kinematic synergy for stabilizing the vertical movement of COM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app