Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2.

Intrauterine adhesion (IUA) is characterized by endometrial fibrosis, which ultimately leads to menstrual abnormalities, infertility, and recurrent miscarriages. The Shh/Gli2 pathway plays a critical role in tissue fibrogenesis and regeneration; Gli2 activation induces profibrogenic effects in various tissues, such as the liver and kidney. However, the role of Gli2 in endometrial fibrosis remains unknown. The purpose of this study was to test the hypothesis that activated Gli2 promotes endometrial fibrosis. Endometrial samples from moderate and severe IUA patients exhibited significantly enhanced expression of Gli2 compared with normal endometrial samples and mild IUA samples. Transfection with overactive Gli2 plasmids induced higher fibrosis-related protein expression, while blocking Gli2 signaling with cyclopamine caused the opposite effect in endometriotic stromal cells (ESCs), including inducing cell-cycle arrest. Menstrual-derived stem cell conditioned medium (MenSCs-CM) reduced endometrial fibrosis by reducing Gli2 protein levels and causing cell-cycle arrest in ESCs through granulocyte-colony stimulating factor (G-CSF). The effect was weakened after neutralization with a G-CSF antibody. Gli2 overexpression reduced the effects of MenSC-CM and G-CSF on fibrosis and cell-cycle progression in vitro. The antifibrotic effect of G-CSF was also observed in murine model. These findings demonstrate that Gli2 signaling promotes endometrial fibrosis, and the inhibition of Gli2 through MenSCs-secreted G-CSF may be of therapeutic value for managing endometrial fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app