JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantitative analysis of lipid debris accumulation caused by cuprizone induced myelin degradation in different CNS areas.

Degradation of myelin sheath is thought to be the cause of neurodegenerative diseases, such as multiple sclerosis (MS), but definitive agreement on the mechanism of how myelin is lost is currently lacking. Autoimmune initiation of MS has been recently questioned by proposing that the immune response is a consequence of oligodendrocyte degeneration. To study the process of myelin breakdown, we induced demyelination with cuprizone and applied coherent anti-Stokes Raman scattering (CARS) microscopy, a non-destructive label-free method to image lipid structures in living tissue. We confirmed earlier results showing a brain region dependent myelin destructive effect of cuprizone. In addition, high resolution in situ CARS imaging revealed myelin debris forming lipid droplets alongwith myelinated axon fibers. Quantification of lipid debris with custom-made software for segmentation and three dimensional reconstruction revealed brain region dependent accumulation of lipid drops inversely correlated with the thickness of myelin sheaths. Finally, we confirmed that in situ CARS imaging is applicable to living human brain tissue in brain slices derived from a patient. Thus, CARS microscopy is potent tool for quantitative monitoring of myelin degradation in unprecedented spatiotemporal resolution during oligodendrocyte damage. We think that the accumulation of lipid drops around degrading myelin might be instrumental in triggering subsequent inflammatory processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app