Add like
Add dislike
Add to saved papers

Haemodynamic performance of AFX and Nellix endografts: a computational fluid dynamics study.

OBJECTIVES: The objective of this study is to analyse the flow conditions in the AFX and Nellix endografts (EGs) accounting for their postimplantation configuration in patients with an endovascular aneurysm repair-treated abdominal aortic aneurysm.

METHODS: We reconstructed post-endovascular aneurysm repair computed tomography scans of patients treated with an AFX or Nellix EG creating post-implantation EG models. We examined 16 patients, 8 in each group. The blood flow properties were obtained by computational fluid dynamics simulations and were subsequently compared with physiological infrarenal blood flow properties measured in 5 healthy subjects. Specifically, pressure drop, maximum velocity and wall shear stress were measured at peak systole and mean helicity at mid-diastole.

RESULTS: Our statistical analyses showed that the haemodynamic properties in both control regions did not vary statistically after the implantation of either the AFX or the Nellix EG, except for helicity that was significantly lower in the abdominal part of the Nellix EG compared with the expected physiological measurement. Regardless of the overall blood flow restoration, it is important to note that low pressure drop was detected along the limbs of the AFX and suppressed blood helical motion was detected at the entrance of the Nellix device.

CONCLUSIONS: It is observed from the results that the AFX EG has achieved absolute restoration of blood flow after endovascular aneurysm repair, although the development of secondary flow in the upper part of the EG and the low pressure drop in its limbs should be acknowledged. The Nellix EG also seems to be haemodynamically efficient. However, the suppression of helical flow before blood enters the device might raise concerns about its clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app