Add like
Add dislike
Add to saved papers

Variables associated with lung congestion as assessed by chest ultrasound in diabetics undergoing hemodialysis.

INTRODUCTION: Ultrasound is an emerging method for assessing lung congestion but is still seldom used. Lung congestion is an important risk of cardiac events and death in end-stage renal disease (ESRD) patients on hemodialysis (HD).

OBJECTIVE: We investigated possible variables associated with lung congestion among diabetics with ESRD on HD, using chest ultrasound to detect extracellular lung water.

METHODS: We studied 73 patients with diabetes as the primary cause of ESRD, undergoing regular HD. Lung congestion was assessed by counting the number of B lines detected by chest ultrasound. Hydration status was assessed by bioimpedance analysis and cardiac function by echocardiography. The collapse index of the inferior vena cava (IVC) was measured by ultrasonography. All patients were classified according to NYHA score. Correlations of the number of B lines with continuous variables and comparisons regarding the number of B lines according to categorical variables were performed. Multivariate linear regression was used to test the variables as independent predictors of the number of B lines.

RESULTS: None of the variables related to hydration status and cardiac function were associated with the number of B lines. In the multivariate analysis, only the IVC collapse index (b = 45.038; p < 0.001) and NYHA classes (b = 13.995; p = 0.006) were independent predictors of the number of B lines.

CONCLUSION: Clinical evaluation based on NYHA score and measurement of the collapsed IVC index were found to be more reliable than bioimpedance analysis to predict lung congestion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app