JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Four-way multimodal fusion of 7 T imaging data using an mCCA+jICA model in first-episode schizophrenia.

Acquisition of multimodal brain imaging data for the same subject has become more common leading to a growing interest in determining the intermodal relationships between imaging modalities to further elucidate the pathophysiology of schizophrenia. Multimodal data have previously been individually analyzed and subsequently integrated; however, these analysis techniques lack the ability to examine true modality inter-relationships. The utilization of a multiset canonical correlation and joint independent component analysis (mCCA + jICA) model for data fusion allows shared or distinct abnormalities between modalities to be examined. In this study, first-episode schizophrenia patients (nSZ =19) and matched controls (nHC =21) completed a resting-state functional magnetic resonance imaging (fMRI) scan at 7 T. Grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and amplitude of low frequency fluctuation (ALFF) maps were used as features in a mCCA + jICA model. Results of the mCCA + jICA model indicated three joint group-discriminating components (GM-CSF, WM-ALFF, GM-ALFF) and two modality-unique group-discriminating components (GM, WM). The joint component findings are highlighted by GM basal ganglia, somatosensory, parietal lobe, and thalamus abnormalities associated with ventricular CSF volume; WM occipital and frontal lobe abnormalities associated with temporal lobe function; and GM frontal, temporal, parietal, and occipital lobe abnormalities associated with caudate function. These results support and extend major findings throughout the literature using independent single modality analyses. The multimodal fusion of 7 T data in this study provides a more comprehensive illustration of the relationships between underlying neuronal abnormalities associated with schizophrenia than examination of imaging data independently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app