A Biomolecular Network Driven Proteinic Interaction in HCV Clearance

Pratichi Singh, Febin Prabhu Dass J
Cell Biochemistry and Biophysics 2018, 76 (1-2): 161-172
Hepatitis C virus infection causes chronic liver disease that leads to cancer-related mortality. Presently around 30% of the HCV (infected) affected population get rid of the infection through spontaneous disease clearance. This phenomenon is conducted by a set of reported immune candidate genes. Hence, this study focuses only on these immune-response related genes with aid of network approach, where the idea is to disseminate the network for better understanding of key functional genes and their transcription control activity. Based on the network analysis the IFNG, TNF, IFNB1, STAT1, NFKB1, STAT3, SOCS1, and MYD88 genes are prioritized as hub genes along with their common transcription factors (TFs), IRF9, NFKB1, and STAT1. The dinucleotide frequency of TF binding elements indicated GG-rich motifs in these regulatory elements. On the other hand, gene enrichment report suggests the regulation of response to interferon gamma signaling pathway, which plays central role in the spontaneous HCV clearance. Therefore, our study tends to prioritize the genes, TFs, and their regulatory pathway towards HCV clearance. Even so, the resultant hub genes and their TFs and TF binding elements could be crucial in underscoring the clearance activity in specific populations.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"