Add like
Add dislike
Add to saved papers

Direct Coculture of Human Chondrocytes and Synovium-Derived Stem Cells Enhances In Vitro Chondrogenesis.

Cell Journal 2018 April
OBJECTIVES: Coculture of chondrocytes and mesenchymal stem cells (MSCs) has been developed as a strategy to overcome the dedifferentiation of chondrocytes during in vitro expansion in autologous chondrocyte transplantation. Synovium-derived stem cells (SDSCs) can be a promising cell source for coculture due to their superior chondrogenic potential compared to other MSCs and easy accessibility without donor site morbidity. However, studies on coculture of chondrocytes and SDSCs are very limited. The aim of this study was to investigate whether direct coculture of human chondrocytes and SDSCs could enhance chondrogenesis compared to monoculture of each cell.

MATERIALS AND METHODS: In this experimental study, passage 2 chondrocytes and SDSCs were directly cocultured using different ratios of chondrocytes to SDSCs (3:1, 1:1, or 1:3). glycosaminoglycan (GAG) synthetic activity was assessed using GAG assays and Safranin-O staining. Expression of chondrogenesis-related genes (collagen types I, II, X, Aggrecan, and Sox-9) were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry staining.

RESULTS: GAG/DNA ratios in 1:1 and 1:3 coculture groups were significantly increased compared to those in the chondrocyte and SDSC monoculture groups. Type II collagen and SOX-9 were significantly upregulated in the 1:1 coculture group compared to those in the chondrocyte and SDSC monoculture groups. On the other hand, osteogenic marker (type I collagen) and hypertrophic marker (type X collagen) were significantly downregulated in the coculture groups compared to those in the SDSC monoculture group.

CONCLUSIONS: Direct coculture of human chondrocytes and SDSCs significantly enhanced chondrogenic potential, especially at a ratio of 1:1, compared to chondrocyte or SDSC monocultures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app