Add like
Add dislike
Add to saved papers

Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage.

Abstract: The signaling molecules TNF-α, AP-1, and NF-κB act to integrate multiple stress signals into a series of diverse antiproliferative responses. Disruption of these processes can promote tumor progression and chemoresistance. Naturally occurring plant derived compounds are considered as attractive candidates for cancer treatment and prevention. Phytoconstituents can control and modify various biological activities by interacting with molecules involved in concerned signaling pathways. The aim of this study was to find binding conformations between phytoconstituents and these signaling molecules responsible for multiple stress signals of UVB induced photodamage. Induced fit docking was carried out for understanding the binding interactions of pantothenic acid (vitamin B5); 3,4,5-trihydroxy benzoic acid (gallic acid); madecassic acid and hexadecanoic acid, ethyl ester (palmitic acid) with TNF-α, AP-1, and NF-κB. Favorable binding conformations between these signaling molecules and the four phytoconstituents were observed. A number of poses were generated to evaluate the binding conformations and common interacting residues between the ligands and proteins. Among them, the best ligands against TNF-α, AP-1, and NF-κB are reported. The present investigation strongly suggests the probable use of these flavonoids for the amelioration of UVB induced photodamage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app