Add like
Add dislike
Add to saved papers

Metabolic engineering of Escherichia coli for the production of indirubin from glucose.

Journal of Biotechnology 2018 Februrary 11
Indirubin is an indole alkaloid that can be used to treat various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. Microbial production of indirubin has so far been achieved by supplementation of rather expensive substrates such as indole or tryptophan. Here, we report the development of metabolically engineered Escherichia coli strain capable of producing indirubin directly from glucose. First, the Methylophaga aminisulfidivorans flavin-containing monooxygenase (FMO) and E. coli tryptophanase (TnaA) were introduced into E. coli in order to complete the biosynthetic pathway from tryptophan to indirubin. Further engineering was performed through rational strategies including disruption of the regulatory repressor gene trpR and removal of feedback inhibitions on AroG and TrpE. Then, combinatorial approach was employed by systematically screening eight genes involved in the common aromatic amino acid pathway. Moreover, availability of the aromatic precursor substrates, phosphoenolpyruvate and erythrose-4-phosphate, was enhanced by inactivating the pykF (pyruvate kinase I) and pykA (pyruvate kinase II) genes, and by overexpressing the tktA gene (encoding transketolase), respectively. Fed-batch fermentation of the final engineered strain led to production of 0.056 g/L of indirubin directly from glucose. The metabolic engineering and synthetic biology strategies reported here thus allows microbial fermentative production of indirubin from glucose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app