Add like
Add dislike
Add to saved papers

Diffusion tensor cardiovascular magnetic resonance with a spiral trajectory: An in vivo comparison of echo planar and spiral stimulated echo sequences.

PURPOSE: Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique.

METHODS: A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo.

RESULTS: There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNREPI  = 8.0 ± 2.2, SNRspiral  = 12.0 ± 2.7; diastasis: SNREPI  = 8.1 ± 1.6, SNRspiral  = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAGEPI  = -0.79 ± 0.07 °/%; HAGspiral  = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAGEPI  = -0.63 ± 0.05 °/%; HAGspiral  = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MDEPI  = 0.99 ± 0.06 × 10-3 mm2 /s, MDspiral  = 1.00 ± 0.09 × 10-3 mm2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2AEPI  = 61 ± 10 °; E2Aspiral  = 63 ± 10 °; P = 0.77; diastasis: E2AEPI  = 18 ± 11 °; E2Aspiral  = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FAEPI  = 0.49 ± 0.03, FAspiral  = 0.41 ± 0.04; P < 0.01; diastasis: FAEPI  = 0.66 ± 0.05, FAspiral  = 0.55 ± 0.03; P < 0.01) and mean diffusivity in diastasis (10%; MDEPI  = 1.00 ± 0.12 × 10-3 mm2 /s, MDspiral  = 1.10 ± 0.09 × 10-3 mm2 /s, P = 0.02).

CONCLUSION: This is the first study to demonstrate DT-CMR STEAM using a spiral trajectory. The SNR was increased by using a spiral rather than the more established EPI readout, and the DT-CMR parameters were largely similar between the two sequences. Magn Reson Med 80:648-654, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app