Add like
Add dislike
Add to saved papers

Ocular biometric changes with different accommodative stimuli using swept-source optical coherence tomography.

PURPOSE: To evaluate ocular biometric changes with different accommodative stimuli using a new swept-source optical biometer.

METHODS: Only the right eye was analyzed. Each subject was measured six times with the IOLMaster 700 swept-source optical biometer (Carl Zeiss Meditec, Jena, Germany) with the subject looking at the stimulus shown by the instrument and with the subject looking at a target placed outside the instrument at 0D of vergence. Axial length (AL), anterior chamber depth (ACD), central corneal thickness (CCT), lens thickness (LT), white-to-white (WTW), and keratometry readings (K1 and K2) were evaluated in both cases. To assess if the changes found may affect the intraocular (IOL) power calculation for surgical applications, we have applied some formulae, using the software provided by the optical biometer manufacturer, to the ocular parameters found in both situations for three different types of IOLs.

RESULTS: No statistically significant differences were found for AL, CCT, WTW, K1 and K2 between the subject looking at the stimulus of the biometer and looking at the outside target at 0D of vergence (p > 0.05). However, the measurement of ACD revealed a statistically significant reduction of 20 microns (p = 0.03) and, on the contrary, LT increased significantly 30 microns (p = 0.02). ACD and LT changes were highly correlated (R2  = 0.91). As for the IOL power calculation, in all cases, the mean change was lower than 0.25 D both for IOL power selection and residual refraction.

CONCLUSIONS: Although ACD and LT change significantly with different accommodative stimuli measured by swept-source optical biometry, these changes are not clinically relevant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app