Add like
Add dislike
Add to saved papers

Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH.

Cellular mRNA levels are determined by the rates of mRNA synthesis and mRNA decay. Typically, mRNA degradation kinetics are measured on a population of cells that are either chemically treated or genetically engineered to inhibit transcription. However, these manipulations can affect the mRNA decay process itself by inhibiting regulatory mechanisms that govern mRNA degradation, especially if they occur on short time-scales. Recently, single molecule fluorescent in situ hybridization (smFISH) approaches have been implemented to quantify mRNA decay rates in single, unperturbed cells. Here, we provide a step-by-step protocol that allows quantification of mRNA decay in single Saccharomyces cerevisiae using smFISH. Our approach relies on fluorescent labeling of single cytoplasmic mRNAs and nascent mRNAs found at active sites of transcription, coupled with mathematical modeling to derive mRNA half-lives. Commercially available, single-stranded smFISH DNA oligonucleotides (smFISH probes) are used to fluorescently label mRNAs followed by the quantification of cellular and nascent mRNAs using freely available spot detection algorithms. Our method enables quantification of mRNA decay of any mRNA in single, unperturbed yeast cells and can be implemented to quantify mRNA turnover in a variety of cell types as well as tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app