Add like
Add dislike
Add to saved papers

Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements.

A sensitive and rapid absorbance based immunosensor that utilizes ex situ functionalized porous silica monoliths as volumetric optical detection elements is demonstrated in this study. The porous monolith structure facilitates high capture probe density and short diffusion length scales, enabling sensitive and rapid assays. Silica monoliths, synthesized and functionalized with immunocapture probes off-chip before integration into a sealed thermoplastic microfluidic device, serve to capture target antigens during perfusion through the porous structure. Gold nanoparticle immunoconjugates are combined with silver enhancement to create microscale silver clusters, followed by perfusion of an aqueous sucrose solution to limit light scattering and enhance optical signal. Using this approach, detection limits as low as 1 ng/mL are achieved for a sandwich assay, with a dynamic range of at least 4 logs. The results confirm that the combination of on-chip index matching with functionalized porous silica monoliths can enables simple and practical flow-through immunoassays for the sensitive and rapid detection of target antigens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app