Add like
Add dislike
Add to saved papers

Generating Electric Current by Bioartificial Photosynthesis.

Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined. Graphical Abstract Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app