Add like
Add dislike
Add to saved papers

Effect of caliber size and fat level on the inactivation of E. coli O157:H7 in dry fermented sausages.

Dry fermented sausages (DFS) have been subject to numerous validation studies, as pathogen reduction heavily relies on both ingredients and processing. In this study the effect of product caliber size (32, 55, 80mm), and fat level (low, 9.67%; high, 18.46% wt/wt) on the inactivation of E. coli O157:H7 during DFS production was examined. Sausages containing a five-strain cocktail of E. coli O157:H7 at 107 CFU/g were manufactured and monitored for changes in physicochemical properties and inoculated E. coli O157:H7 numbers were enumerated during the DFS production stages and log reduction rates were calculated. Significant (P<0.01) reduction in pH from 5.9 to 4.9 was observed in all sausages within 72h of fermentation; however, the observed pH reduction was not significantly (P>0.05) different among sausages of different caliber size or fat levels. No significant (P>0.05) reduction in aw was observed during fermentation of the sausages. However, during the drying phase, sausages with larger caliber sizes required a significantly longer duration of drying to achieve the same aw of smaller caliber size sausages. For instance, to achieve an aw of ≤0.9, following 5days of fermentation/curing, 80mm caliber sausages required up to 27days of drying compared with 13 and 6days for 55 and 32mm caliber size sausages, respectively. Fat levels on the other hand did not significantly (P>0.05) effect the reduction of aw during drying of the sausages. During the fermentation stage there was a significant and rapid reduction in E. coli O157:H7 counts by about 1.1- to 1.4-log units, but was not significantly different among sausages of different caliber size and fat levels. Considering the whole process, only caliber size had a significant effect on log reduction of E. coli O157:H7. ANOVA of log reduction rates of E. coli O157:H7 among sausages of different caliber size and fat levels revealed no significant differences during the fermentation, however, during the drying of the sausages, log reduction rate of E. coli O157:H7 was significantly (P<0.01) lower in sausages with larger caliber sizes and higher fat levels. For instance, log reduction rates for E. coli O157:H7 in high fat large caliber sausages was the lowest at -0.082±0.004 log CFU/g/day compared to all other fat and caliber size combinations. These results suggest that DFS manufacturers producing higher fat and large caliber size products need to consider longer drying periods to achieve the required 5-log inactivation of E. coli O157:H7.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app