Add like
Add dislike
Add to saved papers

Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea.

The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app