Add like
Add dislike
Add to saved papers

Podocytes are new cellular targets of haemoglobin-mediated renal damage.

Recurrent and massive intravascular haemolysis induces proteinuria, glomerulosclerosis, and progressive impairment of renal function, suggesting podocyte injury. However, the effects of haemoglobin (Hb) on podocytes remain unexplored. Our results show that cultured human podocytes or podocytes isolated from murine glomeruli bound and endocytosed Hb through the megalin-cubilin receptor system, thus resulting in increased intracellular Hb catabolism, oxidative stress, activation of the intrinsic apoptosis pathway, and altered podocyte morphology, with decreased expression of the slit diaphragm proteins nephrin and synaptopodin. Hb uptake activated nuclear factor erythroid-2-related factor 2 (Nrf2) and induced expression of the Nrf2-related antioxidant proteins haem oxygenase-1 (HO-1) and ferritin. Nrf2 activation and Hb staining was observed in podocytes of mice with intravascular haemolysis. These mice developed proteinuria and showed podocyte injury, characterized by foot process effacement, decreased synaptopodin and nephrin expression, and podocyte apoptosis. These pathological effects were enhanced in Nrf2-deficient mice, whereas Nrf2 activation with sulphoraphane protected podocytes against Hb toxicity both in vivo and in vitro. Supporting the translational significance of our findings, we observed podocyte damage and podocytes stained for Hb, HO-1, ferritin and phosphorylated Nrf2 in renal sections and urinary sediments of patients with massive intravascular haemolysis, such as atypical haemolytic uraemic syndrome and paroxysmal nocturnal haemoglobinuria. In conclusion, podocytes take up Hb both in vitro and during intravascular haemolysis, promoting oxidative stress, podocyte dysfunction, and apoptosis. Nrf2 may be a potential therapeutic target to prevent loss of renal function in patients with intravascular haemolysis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app