Add like
Add dislike
Add to saved papers

Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), Modulates Purinoceptor-Coupled Calcium Signaling and Murine Nociceptive Behavior.

Hericium erinaceus is well known for the neurotrophic effect it confers by promoting nerve growth factor biosynthesis. We discovered a novel bioactivity of H. erinaceus in its ability to suppress adenosine triphosphate (ATP)-induced calcium signaling in neuronal PC12 cells. ATP, known primarily as a neurotransmitter, also acts on purinoceptors (P2 purinergic receptor [P2R]) to generate the cellular calcium signaling and secretion that mediate P2R physiological manifestations, including pain. Chronic pain reduces quality of life. However, constant analgesic administration can cause liver and kidney injury, as well as loss of the analgesic effect because of desensitization. In this study we investigated the analgesic potential of H. erinaceus through measurements of ATP-induced Ca2+ signaling in cell lines and observation of pain behaviors in mice. In P2R-coupled Ca2+ signaling measurements, extracts of H. erinaceus mycelia (HEEs) blocked ATP-induced Ca2+ signaling in both rat PC12 cells and human HOS cells. HEEs completely blocked ATP-induced Ca2+ signaling in human HOS cells, suggesting that this effect of HEEs is exerted through the P2R subtypes present in HOS cells, which include the P2X4, P2X7, P2Y2, and P2Y4 subtypes. In observations of animal behavior during pain, HEEs significantly reduced heat-induced pain, including postponing both the tail-flick response to heat stimulation and the paw-lifting response to a hot plate. This study demonstrates novel characteristics of H. erinaceus in reducing nociceptive behavior and blocking the functional activity of P2R. Further studies are required to verify this linkage and its molecular mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app