Add like
Add dislike
Add to saved papers

Seizure-induced activation of the HPA axis increases seizure frequency and comorbid depression-like behaviors.

Our laboratory recently demonstrated that seizures activate the hypothalamic-pituitary-adrenal (HPA) axis, increasing circulating levels of corticosterone (O'Toole et al., 2013). Given the well-established proconvulsant actions of corticosterone, we hypothesized that seizure-induced activation of the HPA axis may contribute to future seizure susceptibility. Further, since hypercortisolism is associated with depression, we propose that seizure-induced activation of the HPA axis may contribute to comorbid depression and epilepsy. To test this hypothesis, we generated mice lacking the GABAA receptor (GABAAR) δ subunit specifically in corticotropin-releasing hormone (CRH) neurons (Gabrd/Crh mice), which exhibit hyporeactivity of the HPA axis (Lee et al., 2014). Gabrd/Crh mice exhibit blunted seizure-induced elevations in corticosterone, establishing a useful tool to investigate the contribution of HPA axis dysfunction on epilepsy and associated comorbidities. Interestingly, Gabrd/Crh mice exhibit decreased acute seizure susceptibility following kainic acid (KA) administration. Furthermore, chronically epileptic Gabrd/Crh mice exhibit a decrease in both spontaneous seizure frequency and depression-like behaviors compared with chronically epileptic Cre-/- littermates. Seizure susceptibility and associated depression-like behaviors can be restored to wild type levels by treating Gabrd/Crh mice with exogenous corticosterone. Similarly, chemogenetic activation of CRH neurons in the paraventricular nucleus (PVN) is sufficient to increase seizure susceptibility; whereas, chemogenetic inhibition of CRH neurons in the PVN of the hypothalamus is sufficient to decrease seizure susceptibility and depression-like behaviors in chronically epileptic mice. These data suggest that seizure-induced activation of the HPA axis promotes seizure susceptibility and comorbid depression-like behaviors, suggesting that the HPA axis may be a novel target for seizure control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app