Add like
Add dislike
Add to saved papers

MEMRI reveals altered activity in brain regions associated with anxiety, locomotion, and cardiovascular reactivity on the elevated plus maze in the WKY vs SHR rats.

Individuals with anxiety/depression often have exaggerated cardiovascular responses to stressful stimuli and a comorbidity with hypertension. Alternatively, individuals with hypertension can be more anxious. In the present study cardiovascular changes were evaluated during behavioral testing of anxious behavior on the elevated plus maze (EPM) in the spontaneously hypertensive rat (SHR), a rodent model of neurogenic hypertension, and compared to the response of the more anxious, but normotensive, Wistar-Kyoto rat (WKY). Manganese-enhanced magnetic resonance imaging (MEMRI) was used to identify regional differences in baseline brain activity. Parallel to indicators of elevated behavioral anxiety on the EPM, WKYs had a greater increase in blood pressure but not heart rate when compared to the SHR while on the EPM. Associated with differences in anxiety-related behavior and autonomic responses, we observed increased baseline activity in the amygdala, central gray, habenula and interpeduncular nucleus with MEMRI of the WKY compared to the SHR. Conversely, elevated baseline brain activity was found in regions associated with blood pressure control and system arousal, including the hypothalamus, locus coeruleus and pedunculopontine tegmental nucleus, in the SHR vs WKY, in-line with increased resting blood pressure and increased mobility in this strain. Lastly, reduced activity in hippocampal regions was identified in the SHR compared to the WKY and may be associated with cognitive impairment previously reported in the SHR. Thus, autonomic reactivity may be a true measure of stress in rodent models of anxiety and MEMRI presents a powerful technique to uncover novel brain mechanisms of blood pressure control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app