Add like
Add dislike
Add to saved papers

Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals.

Attention deficit hyperactivity disorder is a neurodevelopmental condition associated with varying levels of hyperactivity, inattention, and impulsivity. This study investigates brain function in children with attention deficit hyperactivity disorder using measures of nonlinear dynamics in EEG signals during rest. During eyes-closed resting, 19 channel EEG signals were recorded from 12 ADHD and 12 normal age-matched children. We used the multifractal singularity spectrum, the largest Lyapunov exponent, and approximate entropy to quantify the chaotic nonlinear dynamics of these EEG signals. As confirmed by Wilcoxon rank sum test, largest Lyapunov exponent over left frontal-central cortex exhibited a significant difference between ADHD and the age-matched control groups. Further, mean approximate entropy was significantly lower in ADHD subjects in prefrontal cortex. The singularity spectrum was also considerably altered in ADHD compared to control children. Evaluation of these features was performed by two classifiers: a Support Vector Machine and a Radial Basis Function Neural Network. For better comparison, subject classification based on frequency band power was assessed using the same types of classifiers. Nonlinear features provided better discrimination between ADHD and control than band power features. Under four-fold cross validation testing, support vector machine gave 83.33% accurate classification results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app