Add like
Add dislike
Add to saved papers

Development of nanoparticle adjuvants to potentiate the immune response against diphtheria toxoid.

Human Antibodies 2018 Februrary 6
BACKGROUND: Over the years, diphtheria was known as contagious fatal infection caused by Corynebacterium diphtheria that affects upper respiratory system. The spread of diphtheria epidemic disease is best prevented by vaccination with diphtheria toxoid vaccine. Aluminum adjuvants were reported to stimulate the immune responses to killed and subunit vaccines.

OBJECTIVE: Our study aimed to minimize adjuvant particles size, to gain insight of resulting immunity titer and impact on immune response antibody subtypes.

METHODS: Aluminum salts and calcium phosphate adjuvants were prepared, followed by micro/nanoparticle adjuvants preparation. After formulation of diphtheria vaccine from diphtheria toxoid and developed adjuvants, we evaluated efficacy of these prepared vaccines based on their impact on immune response via measuring antibodies titer, antibodies isotyping and cytokines profile in immunized mice.

RESULTS: A noteworthy increase in immunological parameters was observed; antibodies titer was higher in serum of mice injected with nanoparticle adjuvants-containing vaccine than mice injected with standard adjuvant-containing vaccine and commercial vaccine. Aluminum compounds adjuvants (nanoparticles and microparticles formulation) and microparticles calcium phosphate adjuvant induce TH2 response, while nanoparticles calcium phosphate and microparticles aluminum compounds adjuvants stimulate TH1 response.

CONCLUSIONS: Different treatments to our adjuvant preparations (nanoparticles and microparticles formulation) had a considerable impact on vaccine immunogenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app