Add like
Add dislike
Add to saved papers

A Novel 3D Pedestrian Navigation Method for a Multiple Sensors-Based Foot-Mounted Inertial System.

Sensors 2017 November 23
In this paper, we present a novel method for 3D pedestrian navigation of foot-mounted inertial systems by integrating a MEMS-IMU, barometer, and permanent magnet. Zero-velocity update (ZUPT) is a well-known algorithm to eliminate the accumulated error of foot-mounted inertial systems. However, the ZUPT stance phase detector using acceleration and angular rate is threshold-based, which may cause incorrect stance phase estimation in the running gait pattern. A permanent magnet-based ZUPT detector is introduced to solve this problem. Peaks extracted from the magnetic field strength waveform are mid-stances of stance phases. A model of peak-peak information and stance phase duration is developed to have a quantitative calculation method of stance phase duration in different movement patterns. Height estimation using barometer is susceptible to the environment. A height difference information aided barometer (HDIB) algorithm integrating MEMS-IMU and barometer is raised to have a better height estimation. The first stage of HDIB is to distinguish level ground/upstairs/downstairs and the second stage is to calculate height using reference atmospheric pressure obtained from the first stage. At last, a ZUPT-based adaptive average window length algorithm (ZUPT-AAWL) is proposed to calculate the true total travelled distance to have a more accurate percentage error (TTDE). This proposed method is verified via multiple experiments. Numerical results show that TTDE ranges from 0.32% to 1.04% in both walking and running gait patterns, and the height estimation error is from 0 m to 2.35 m.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app