Add like
Add dislike
Add to saved papers

A Gene selection approach based on the fisher linear discriminant and the neighborhood rough set.

Bioengineered 2018 January 2
In recent years, tumor classification based on gene expression profiles has drawn great attention, and related research results have been widely applied to the clinical diagnosis of major gene diseases. These studies are of tremendous importance for accurate cancer diagnosis and subtype recognition. However, the microarray data of gene expression profiles have small samples, high dimensionality, large noise and data redundancy. To further improve the classification performance of microarray data, a gene selection approach based on the Fisher linear discriminant (FLD) and the neighborhood rough set (NRS) is proposed. First, the FLD method is employed to reduce the preliminarily genetic data to obtain features with a strong classification ability, which can form a candidate gene subset. Then, neighborhood precision and neighborhood roughness are defined in a neighborhood decision system, and the calculation approaches for neighborhood dependency and the significance of an attribute are given. A reduction model of neighborhood decision systems is presented. Thus, a gene selection algorithm based on FLD and NRS is proposed. Finally, four public gene datasets are used in the simulation experiments. Experimental results under the SVM classifier demonstrate that the proposed algorithm is effective, and it can select a smaller and more well-classified gene subset, as well as obtain better classification performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app