MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach

Aya Awad, Mohamed Bader-El-Den, James McNicholas, Jim Briggs
International Journal of Medical Informatics 2017, 108: 185-195
29132626

BACKGROUND: Mortality prediction of hospitalized patients is an important problem. Over the past few decades, several severity scoring systems and machine learning mortality prediction models have been developed for predicting hospital mortality. By contrast, early mortality prediction for intensive care unit patients remains an open challenge. Most research has focused on severity of illness scoring systems or data mining (DM) models designed for risk estimation at least 24 or 48h after ICU admission.

OBJECTIVES: This study highlights the main data challenges in early mortality prediction in ICU patients and introduces a new machine learning based framework for Early Mortality Prediction for Intensive Care Unit patients (EMPICU).

MATERIALS AND METHODS: The proposed method is evaluated on the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database. Mortality prediction models are developed for patients at the age of 16 or above in Medical ICU (MICU), Surgical ICU (SICU) or Cardiac Surgery Recovery Unit (CSRU). We employ the ensemble learning Random Forest (RF), the predictive Decision Trees (DT), the probabilistic Naive Bayes (NB) and the rule-based Projective Adaptive Resonance Theory (PART) models. The primary outcome was hospital mortality. The explanatory variables included demographic, physiological, vital signs and laboratory test variables. Performance measures were calculated using cross-validated area under the receiver operating characteristic curve (AUROC) to minimize bias. 11,722 patients with single ICU stays are considered. Only patients at the age of 16 years old and above in Medical ICU (MICU), Surgical ICU (SICU) or Cardiac Surgery Recovery Unit (CSRU) are considered in this study.

RESULTS: The proposed EMPICU framework outperformed standard scoring systems (SOFA, SAPS-I, APACHE-II, NEWS and qSOFA) in terms of AUROC and time (i.e. at 6h compared to 48h or more after admission).

DISCUSSION AND CONCLUSION: The results show that although there are many values missing in the first few hour of ICU admission, there is enough signal to effectively predict mortality during the first 6h of admission. The proposed framework, in particular the one that uses the ensemble learning approach - EMPICU Random Forest (EMPICU-RF) offers a base to construct an effective and novel mortality prediction model in the early hours of an ICU patient admission, with an improved performance profile.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
29132626
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"