Add like
Add dislike
Add to saved papers

Propofol Through Upregulating Caveolin-3 Attenuates Post-Hypoxic Mitochondrial Damage and Cell Death in H9C2 Cardiomyocytes During Hyperglycemia.

BACKGROUND/AIMS: Hearts from diabetic subjects are susceptible to myocardial ischemia reperfusion (I/R) injury. Propofol has been shown to protect against myocardial I/R injury due to its antioxidant properties while the underlying mechanism remained incompletely understood. Thus, this study aimed to determine whether or not propofol could attenuate myocardial I/R injury by attenuating mitochondrial dysfunction/damage through upregulating Caveolin (Cav)-3 under hyperglycemia.

METHODS: Cultured rat cardiomyocyte H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in the absence or presence of propofol under high glucose (HG), and cell viability, lactate dehydrogenase (LDH) and mitochondrial viability as well as creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) and intracellular adenosine triphosphate (ATP) content were measured with colorimetric Enzyme-Linked Immunosorbent Assays. Intracellular levels of oxidative stress was assessed using 2,7-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent staining and mitochondrial-dependent apoptosis was assessed by detecting mitochondrial membrane potential and the activation of apoptotic caspases 3 and 9.

RESULTS: Exposure of cells to HG without or with H/R both significantly increased cell injury, cell apoptosis and enhanced oxidative stress that were associated with mitochondrial dysfunction and decreased Cav-3 protein expression. All these changes were further exacerbated following H/R under HG. Administration of propofol at concentrations from 12.5 to 50 µM but not 100 µM significantly attenuated H/R injury that was associated with increased Cav-3 expression and activation of the prosurvival proteins Akt and STAT3 with the optimal protective effects seen at 50 µM of propofol (P25). The beneficial effects of propofol(P25) were abrogated by Cav-3 disruption with β-methyl-cyclodextrin.

CONCLUSION: Propofol counteracts cardiomyocyte H/R injury by attenuating mitochondrial damage and improving mitochondrial biogenesis through upregulating Cav-3 during hyperglycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app