JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Rational combination of immunotherapy for triple negative breast cancer treatment.

Recent evidence indicates that tumor infiltrating lymphocytes (TILs), including cytotoxic T cells, are present in the tumor microenvironment of triple-negative breast cancers (TNBC). Despite the presence of cytotoxic T cells, these tumors still develop, progress, and metastasize, suggesting evasion of immune response. One mechanism of immunosuppression is the presence of the T cell inhibitory molecule, programmed death protein 1 (PD-1), on infiltrating T cells and its cognate ligand programmed death ligand 1 (PD-L1) on tumor cells, myeloid dendritic cells (DCs), and macrophages, in the tumor microenvironment. Because TNBC is immunologically insensitive, combinatorial strategies may be ideal to increase both anti-proliferation activity and cytotoxic T cells activity in TNBC. On the basis of two recently discovered regulatory mechanisms of PD-L1, we discuss the potential interactions to boost anti-tumor immunity against TNBC in this review and propose therapeutic strategies that could reduce PD-L1 expression by chemotherapeutic drugs or targeted therapies and sensitize TNBC to immunotherapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app