Add like
Add dislike
Add to saved papers

Comparison of the protective effects of direct ischemic preconditioning and remote ischemic preconditioning in a rabbit model of transient spinal cord ischemia.

Journal of Anesthesia 2018 Februrary
INTRODUCTION: This study aimed to determine the relative potency of direct ischemic preconditioning (DIPC) and remote ischemic preconditioning (RIPC) for protection against ischemic spinal cord injury in rabbits and to explore the mechanisms involved.

METHODS: In experiment 1, we compared the neurological and histopathological outcomes of DIPC, kidney RIPC, and limb RIPC. The DIPC and kidney RIPC groups received two cycles of 5-min occlusion/15-min reperfusion of the abdominal aorta and left renal artery, respectively. The limb RIPC group received two cycles of 10-min occlusion/10-min reperfusion of the femoral arteries bilaterally. Thirty minutes after the conditioning ischemia, spinal cord ischemia was produced by occluding the abdominal aorta for 15 min. In experiments 2 and 3, we investigated whether pretreatment using a free-radical scavenger, dimethylthiourea (DMTU), an adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or a mitochondrial ATP-sensitive potassium channel antagonist, 5-hydroxydecanoate (5HD), could attenuate the protective effects of DIPC. In experiment 4, comprehensive analysis of phosphorylated proteins in the spinal cord was performed using a Proteome Profiler Array followed by immunoblotting to elucidate the signal pathway activated by DIPC.

RESULTS: In experiment 1, DIPC improved the neurological and histopathological outcomes, whereas kidney and limb RIPC had no protective effects. In experiments 2 and 3, strong protective effects of DIPC were reconfirmed but were not attenuated by DMTU, DPCPX, or 5HD. In experiment 4, DIPC induced phosphorylation of Akt2.

CONCLUSIONS: DIPC, but not kidney or limb RIPC, protected against ischemic spinal cord injury in rabbits. Akt2 might contribute to this protective effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app