Add like
Add dislike
Add to saved papers

Independently tunable dual-wavelength fiber oscillator with synchronized pulsed emission based on a theta ring cavity and a fiber Bragg grating array.

Optics Express 2017 October 31
We present a fiber-integrated laser enabling independent tuning of two emission wavelengths with a synchronized pulsed emission. The discrete tuning concept comprises a theta cavity fiber laser (TCFL), a fiber Bragg grating (FBG) array as a versatile spectral filter, facilitating tailored tuning ranges, and optical gating to control the emission spectrum. A novel electrical driving scheme uniquely enables independently tunable multi-wavelength emission from a single laser oscillator. Tunable dual-wavelength emission is experimentally investigated with a ytterbium (Yb)-doped TCFL using an FBG array with 11 gratings. Over a tuning range of 25 nm, 55 wavelength pairs have been demonstrated with high signal contrast (≈ 40 dB) and narrow linewidth (< 40GHz). Based on the demands of prospective applications, pulse synchronicity is studied with a fiber-based time-delay spectrometer (TDS) simultaneously measuring the joint temporal and spectral pulse properties down to a single-pulse analysis. Accordingly, tunable and fully synchronized dual-wavelength emissions have been verified by driving the TCFL with optimized electrical gating parameters. This unique operation mode achieved in a cost-efficient fiber-integrated laser design targets novel applications e.g. in nonlinear spectroscopy and biophotonics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app