JOURNAL ARTICLE

The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis

Christina Bergmann, Amelie Brandt, Benita Merlevede, Ludwig Hallenberger, Clara Dees, Thomas Wohlfahrt, Sebastian Pötter, Yun Zhang, Chih-Wei Chen, Tatiana Mallano, Ruifang Liang, Rosebeth Kagwiria, Alexander Kreuter, Ioanna Pantelaki, Aline Bozec, David Abraham, Ralf Rieker, Andreas Ramming, Oliver Distler, Georg Schett, Jörg H W Distler
Annals of the Rheumatic Diseases 2018, 77 (1): 150-158
29070530

OBJECTIVES: Systemic sclerosis (SSc) fibroblasts remain activated even in the absence of exogenous stimuli. Epigenetic alterations are thought to play a role for this endogenous activation. Trimethylation of histone H3 on lysine 27 (H3K27me3) is regulated by Jumonji domain-containing protein 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in a therapeutically targetable manner. The aim of this study was to explore H3K27me3 demethylases as potential targets for the treatment of fibrosis.

METHODS: JMJD3 was inactivated by small interfering RNA-mediated knockdown and by pharmacological inhibition with GSKJ4. The effects of targeted inactivation of JMJD3 were analysed in cultured fibroblasts and in the murine models of bleomycin-induced and topoisomerase-I (topoI)-induced fibrosis. H3K27me3 at the FRA2 promoter was analysed by ChIP.

RESULTS: The expression of JMJD3, but not of UTX, was increased in fibroblasts in SSc skin and in experimental fibrosis in a transforming growth factor beta (TGFβ)-dependent manner. Inactivation of JMJD3 reversed the activated fibroblast phenotype in SSc fibroblasts and prevented the activation of healthy dermal fibroblasts by TGFβ. Pharmacological inhibition of JMJD3 ameliorated bleomycin-induced and topoI-induced fibrosis in well-tolerated doses. JMJD3 regulated fibroblast activation in a FRA2-dependent manner: Inactivation of JMJD3 reduced the expression of FRA2 by inducing accumulation of H3K27me3 at the FRA2 promoter. Moreover, the antifibrotic effects of JMJD3 inhibition were reduced on knockdown of FRA2 .

CONCLUSION: We present first evidence for a deregulation of JMJD3 in SSc. JMJD3 modulates fibroblast activation by regulating the levels of H3K27me3 at the promoter of FRA2 . Targeted inhibition of JMJD3 limits the aberrant activation of SSc fibroblasts and exerts antifibrotic effects in two murine models.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
29070530
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"