Add like
Add dislike
Add to saved papers

Predicting the stimulation effectiveness using pre-stimulation neural states via optogenetic activation of the medial septum glutamatergic neurons modulating the hippocampal neural activity.

In this study, we explored the role of pre-stimulation neural states on the effectiveness of optogenetic stimulation. Optogenetic stimulation was applied to the medial septum glutamatergic neurons to modulate the hippocampal neural activity in a rat tetanus toxin seizure model. The hippocampal local field potential was recorded using a multi electrode array in an awake and behaving rat. Optical stimulation with a 465nm light source was applied at 35Hz in a 20 seconds off / 20 seconds on pattern with simultaneous recording from the hippocampus. Both the baseline and the stimulation period recordings were divided into 2 second segments and used for the further analysis. In the first experiment, a support vector machine (SVM) model classified the neural states by using spectral features between 0 and 50Hz. 447 out of 545 segments (82.02%) were correctly labeled as `Baseline' while only 326 out of 544 (59.93%) segments from the stimulation period were correctly labeled as `Stimulation.' As the ratio of mislabels is significantly higher for the stimulation period (chi-squared, p<;0.01), we concluded that the stimulation was not always effective. In the second experiment, an SVM model predicted the stimulation effectiveness using the spectral features of the pre-stimulation segments. The classification result shows that 63.7% of the pre-stimulation segments correctly predicted the stimulation effectiveness. These findings suggest that the prediction of the stimulation effectiveness may improve the stimulation efficacy by implementing a state-based stimulation protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app