Add like
Add dislike
Add to saved papers

Towards precise tracking of electric-mechanical cardiac time intervals through joint ECG and BCG sensing and signal processing.

Automatic tracking of intra-beat cardiac activities in ballistocardiogram (BCG) is a highly interesting yet technically challenging topic for cardiac monitoring, due to the signal's high susceptibility to various forms of distortions. In this paper, we aim to further investigate the BCG waveform detection from a signal processing and analysis viewpoint. We collect synchronized electrocardiography(ECG) and BCG recordings from four healthy human subjects using an in-house built multi-physiological monitoring device. Particularly, we study post-exercise ECG-BCG signals that embed considerable variation in the heart beat during the post-exercise recovery phase. Furthermore, we develop an efficient and interactive tool for detecting and marking ECG-BCG waveforms in each heart beat. Through analyzing the detected time interval signals, we explore new interesting patterns of dynamic associations between different time interval signals. At the same time, we call for development of improved detection algorithms to address robustness and accuracy issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app