Add like
Add dislike
Add to saved papers

Clinicopathologic implications of CD8 + /Foxp3 + ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients.

Currently, little is known about the interactions between microRNAs (miRNAs) and the PD-1/PD-L1 signaling pathway in chordoma, and data discussing the role of the immune milieu in chordoma prognosis are limited. We aimed to analyze the relationship between PD-L1, miR-574-3p, microenvironmental tumor-infiltrating lymphocytes (TILs) and clinicopathological features of spinal chordoma patients. PD-L1 expression and TILs (including Foxp3+ , CD8+ , PD-1+ and PD-L1+ ) were assessed by immunohistochemistry in tumor specimens of 54 spinal chordoma patients. MiRNAs microarray and bioinformatical analysis were used to identify miRNAs potentially regulating PD-L1 expression, which were further validated by quantitative RT-PCR. miR-574-3p was identified to potentially regulate PD-L1 expression in chordoma, which inversely correlated with PD-L1. Positive PD-L1 expression on tumor cells was associated with advanced stages (P = 0.041) and TILs infiltration (P = 0.005), whereas decreased miR-574-3p level correlated with higher muscle invasion (P = 0.012), more severe tumor necrosis (P = 0.022) and poor patient survival. Importantly, a patient subgroup with PD-L1+ /miR-574-3plow chordoma phenotype was significantly associated with worse local recurrence-free survival (LRFS) (P = 0.026). PD-1+ TILs density was associated with surrounding muscle invasion (P = 0.014), and independently portended poor LRFS (P = 0.040), while PD-L1+ TILs showed tendencies of less aggressive clinical outcomes. Multivariate analysis of OS only found CD8+ /Foxp3+ ratio to be independent prognostic factor (P = 0.022). These findings may be useful to stratify patients into prognostic groups and provide a rationale for the use of checkpoint blockade therapy, possibly by administering miR-574-3p mimics, in spinal chordoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app