Add like
Add dislike
Add to saved papers

Obstructive sleep apnea and rhonchopathy are associated with downregulation of trefoil factor family peptide 3 (TFF3)-Implications of changes in oral mucus composition.

STUDY OBJECTIVES: Trefoil factor family (TFF) peptides belong to the family of mucin-associated peptides and are expressed in most mucosal surfaces. TFF peptides carry out functions such as proliferation and migration enhancement, anti-apoptosis, and wound healing. Moreover, TFFs are associated with mucins and interact with them as "linker peptides", thereby influencing mucus viscosity. To test the hypothesis that in rhonchopathy and obstructive sleep apnea (OSA) changes occur in the expression of TFF3 and -2 that could contribute to changes in mucus viscosity, leading to an increase in upper airway resistance during breathing.

METHODS: RT-PCR, Western-blot, immunohistochemistry and ELISA were performed to detect and quantify TFF3 and -2 in uvula samples. In addition, 99 saliva samples from patients with mild, moderate or severe OSA, as well as samples from rhonchopathy patients and from healthy volunteers, were analyzed by ELISA.

RESULTS: TFF3 was detected in all uvula samples. Immunohistochemistry revealed a subjectively decreasing antibody reactivity of the uvula epithelia with increasing disease severity. ELISA demonstrated significantly higher TFF3 saliva protein concentrations in the healthy control group compared to cases with rhonchopathy and OSA. Predisposing factors of OSA such as BMI or age showed no correlation with TFF3. No significant changes were observed with regard to TFF2.

CONCLUSIONS: The results suggest the involvement of TFF3 in the pathogenesis of rhonchopathy and OSA and lead to the hypothesis that reduction of TFF3 production by the epithelium and subepithelial mucous glands of the uvula contribute to an increase in breathing resistance due to a change in mucus organization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app