Add like
Add dislike
Add to saved papers

Estimating the Comparative Effectiveness of Feeding Interventions in the Pediatric Intensive Care Unit: A Demonstration of Longitudinal Targeted Maximum Likelihood Estimation.

Longitudinal data sources offer new opportunities for the evaluation of sequential interventions. To adjust for time-dependent confounding in these settings, longitudinal targeted maximum likelihood based estimation (TMLE), a doubly robust method that can be coupled with machine learning, has been proposed. This paper provides a tutorial in applying longitudinal TMLE, in contrast to inverse probability of treatment weighting and g-computation based on iterative conditional expectations. We apply these methods to estimate the causal effect of nutritional interventions on clinical outcomes among critically ill children in a United Kingdom study (Control of Hyperglycemia in Paediatric Intensive Care, 2008-2011). We estimate the probability of a child's being discharged alive from the pediatric intensive care unit by a given day, under a range of static and dynamic feeding regimes. We find that before adjustment, patients who follow the static regime "never feed" are discharged by the end of the fifth day with a probability of 0.88 (95% confidence interval: 0.87, 0.90), while for the patients who follow the regime "feed from day 3," the probability of discharge is 0.64 (95% confidence interval: 0.62, 0.66). After adjustment for time-dependent confounding, most of this difference disappears, and the statistical methods produce similar results. TMLE offers a flexible estimation approach; hence, we provide practical guidance on implementation to encourage its wider use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app