Add like
Add dislike
Add to saved papers

Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting.

Biofabrication 2017 November 15
Though bioprinting is a forward-looking approach in bone tissue engineering, the development of bioinks which are on the one hand processable with the chosen printing technique, and on the other hand possess the relevant mechanical as well as osteoconductive features remains a challenge. In the present study, polymer solutions based on methacrylated gelatin and methacrylated hyaluronic acid modified with hydroxyapatite (HAp) particles (5 wt%) were prepared. Encapsulation of primary human adipose-derived stem cells in the HAp-containing gels and culture for 28 d resulted in a storage moduli significantly increased to 126% ± 9.6% compared to the value on day 1 by the sole influence of the HAp. Additional use of osteogenic media components resulted in an increase of storage module up to 199% ± 27.8%. Similarly, the loss moduli was increased to 370% ± 122.1% under the influence of osteogenic media components and HAp. Those changes in rheological material characteristics indicate a distinct change in elastic and viscous hydrogel properties, and are attributed to extensive matrix production in the hydrogels by the encapsulated cells, what could also be proven by staining of bone matrix components like collagen I, fibronectin, alkaline phosphatase and osteopontin. When using the cell-laden polymer solutions as bioinks to build up relevant geometries, the ink showed excellent printability and the printed grid structure's integrity remained intact over a culture time of 28 d. Again, an intense matrix formation as well as upregulation of osteogenic markers by the encapsulated cells could be shown. In conclusion, we demonstrated that our HAp-containing bioinks and hydrogels on basis of methacrylated gelatin and hyaluronic acid are on the one hand highly suitable for the build-up of relevant three-dimensional geometries with microextrusion bioprinting, and on the other hand exhibit a significant positive effect on bone matrix development and remodeling in the hydrogels, as indicated by rheological measurements and staining of bone components. This makes the developed composite hydrogels an excellent material for bone bioprinting approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app