Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO 2

Huei-Ru Molly Jhong, Claire E Tornow, Chaerin Kim, Sumit Verma, Justin L Oberst, Paul S Anderson, Andrew A Gewirth, Tsuyohiko Fujigaya, Naotoshi Nakashima, Paul J A Kenis
Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry 2017 November 17, 18 (22): 3274-3279
Multiple approaches will be needed to reduce the atmospheric CO2 levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO2 driven by renewable energy is one approach to reduce CO2 emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO2 to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H2 : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm-2 . The observed high activity, originating from a high electrochemically active surface area (23 m2  g-1 Au), in combination with the low loading (0.17 mg cm-2 ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO2 .

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"