Add like
Add dislike
Add to saved papers

Correlation of Ion Transport Hysteresis with the Nanogeometry and Surface Factors in Single Conical Nanopores.

Analytical Chemistry 2017 November 8
Better understanding in the dynamics of ion transport through nanopores or nanochannels is important for sensing, nucleic acid sequencing and energy technology. In this paper, the intriguing nonzero cross point, resolved from the pinched hysteresis current-potential (i-V) curves in conical nanopore electrokinetic measurements, is quantitatively correlated to the surface and geometric properties by simulation studies. The analytical descriptions of the conductance and potential at the cross point are developed: the cross-point conductance includes both the surface and volumetric conductance; the cross-point potential represent the overall/averaged surface potential difference across the nanopore. The impacts by individual parameter such as pore radius, half cone angle, and surface charges are systematically studied in the simulation that would be convoluted and challenging in experiments. The elucidated correlation is supported by and offer predictive guidance for experimental studies. The results also offer more quantitative and systematic insights in the physical origins of the concentration polarization dynamics in addition to ionic current rectification inside conical nanopores and other asymmetric nanostructures. Overall, the cross point serves as a simple yet informative analytical parameter to analyze the electrokinetic transport through broadly defined nanopore-type devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app