Add like
Add dislike
Add to saved papers

miR-124-3p attenuates MPP + -induced neuronal injury by targeting STAT3 in SH-SY5Y cells.

Ample evidence has demonstrated the involvement of microRNAs in Parkinson's disease pathogenesis. miR-124-3p was reported to be able to improve neural functional recovery. However, the underlying mechanism of miR-124-3p in Parkinson's disease progression was not well established. This study was designed to investigate the role of miR-124-3p in methyl phenyl pyridinium iodide (MPP)+ -induced SH-SY5Y cells, an in vitro Parkinson's disease model. It is observed that miR-124-3p expression was decreased, and STAT3 expression was increased in MPP+ -induced SH-SY5Y cells. miR-124-3p overexpression attenuated MPP+ -induced neuronal injury, displayed as increased cell viability and superoxide dismutase activities, as well as reduced cell apoptosis, Caspase-3 activity, lactate dehydrogenase activity, inflammatory factors TNF-α, and IL-1β levels and reactive oxygen species generation. Moreover, STAT3 was confirmed to be a miR-124-3p target. Restored STAT3 expression reversed miR-124-3p-induced neuroprotective effects against MPP+ -mediated neuronal injury. These data demonstrated that miR-124-3p contributed to neuroprotective effects in MPP+ -induced Parkinson's disease cell model by targeting STAT3. Impact statement PD affects millions of people in the world, causing uncontrolled tremors. MicroRNAs, a class of endogenous single-stranded non-coding transcript with approximately 22 nucleotides, could bind to the 3″ UTR of their targets. The functional action of miR-124-3p in PD was not fully elucidated. Our study found that ectopic expression miR-124-3p attenuated MPP+ -induced injury in PD model in vitro by suppressing neurotoxicity, neuronal apoptosis, neuroinflammation, and oxidative stress. Moreover, we validated that miR-124-3p could bind to STAT3 mediating the neuroprotective effect of miR-124-3p. We believe this study will be interesting for readers of this area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app