Add like
Add dislike
Add to saved papers

Measuring site fidelity and spatial segregation within animal societies.

Animals often display a marked tendency to return to previously visited locations that contain important resources, such as water, food, or developing brood that must be provisioned. A considerable body of work has demonstrated that this tendency is strongly expressed in ants, which exhibit fidelity to particular sites both inside and outside the nest. However, thus far many studies of this phenomena have taken the approach of reducing an animal's trajectory to a summary statistic, such as the area it covers.Using both simulations of biased random walks, and empirical trajectories from individual rock ants, Temnothorax albipennis, we demonstrate that this reductive approach suffers from an unacceptably high rate of false negatives.To overcome this, we describe a site-centric approach which, in combination with a spatially-explicit null model, allows the identification of the important sites towards which individuals exhibit statistically significant biases.Using the ant trajectories, we illustrate how the site-centric approach can be combined with social network analysis tools to detect groups of individuals whose members display similar space-use patterns.We also address the mechanistic origin of individual site fidelity; by examining the sequence of visits to each site, we detect a statistical signature associated with a self-attracting walk - a non-Markovian movement model that has been suggested as a possible mechanism for generating individual site fidelity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app