JOURNAL ARTICLE

MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia

Yongqiang Sha, Yonggang Lv, Zhiling Xu, Li Yang, Xiaoying Hao, Ruli Afandi
Life Sciences 2017 November 15, 189: 52-62
28927682

AIMS: Severe hypoxia always inhibits the cell proliferation, osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and hinders bone defect repair. Herein we explored the effects of mechano-growth factor (MGF) E peptide on the proliferation and osteogenic differentiation of BMSCs under severe hypoxia.

MATERIALS AND METHODS: CoCl2 was utilized to simulate severe hypoxia. MTS was used to detect cell viability. Cell proliferation was verified through flow cytometry and EdU assay. Osteogenic differentiation of BMSCs and osteoblast-specific genes were detected through alkaline phosphatase (ALP) and Alizarin Red S staining, and quantitative real-time PCR, respectively. Hypoxia-inducible factor 1α (HIF-1α), p-ERK1/2 and p-Akt expression levels were detected through western blotting and immunofluorescence.

KEY FINDINGS: Severe hypoxia induced HIF-1α accumulation and transferring into the nucleus, and reduced cell proliferation and osteogenic differentiation of BMSCs. The expression levels of osteoblast-specific genes were markedly decreased after differentiation culture for 0, 7 or 14days. Fortunately, MGF E peptide inhibited HIF-1α expression and transferring into the nucleus. Cell proliferation and osteogenic differentiation of BMSCs could be recovered by MGF E peptide pretreatment. MEK-ERK1/2 and PI3K-Akt signaling pathway were confirmed to be involved in MGF E peptide regulating the abovementioned indexes of BMSCs. What's more, short-time treatment with MGF E peptide alone promoted the osteogenic differentiation of BMSCs as well.

SIGNIFICANCE: Our study provides new evidence for the role of MGF E peptide in regulating proliferation and osteogenic differentiation of BMSCs under severe hypoxia, which may potentially have therapeutic implication for bone defect repair.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
28927682
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"