Add like
Add dislike
Add to saved papers

MicroRNA-7-5p regulates the proliferation and migration of intestinal epithelial cells by targeting trefoil factor 3 via inhibiting the phosphoinositide 3-kinase/Akt signalling pathway.

Trefoil factor 3 (TFF3) reconstructs the epithelial barrier by stimulating epithelial cell migration and proliferation, and significantly contributes to intestinal mucosal damage and healing. In a previous study, TFF3 was identified as a novel target of microRNA-7-5p (miR-7-5p). The aim of the present study was to investigate the roles and mechanisms of miR-7-5p in the proliferation and migration of intestinal epithelial cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the expression level of miR-7-5p in the experimental groups. In addition, western blot analysis was performed to examine the expression levels of TFF3, phosphoinositide 3-kinase (PI3K), Akt and phosphorylated (p)-AKT when miR-7-5p or TFF3 was overexpressed, and the effects of miR-7-5p and TFF3 on LS174T cell proliferation and migration were simultaneously investigated. miR-7-5p was demonstrated to decrease the expression level of TFF3, and inhibit LS174T cell proliferation and migration, which was accompanied by decreased expression levels of PI3K and p-Akt. miR-7-5p was decreased following combined treatment with the TFF3 plasmid and miR‑7-5p mimics, compared with treatment with miR-7-5p mimics alone, which was accompanied by increased expression levels of TFF3, PI3K and p-Akt, and enhanced LS174T cell proliferation and migration effects. The expression levels of miR-7-5p in the miRNA negative control (NC) + LY294002 group, the miR‑7-5p mimic + LY294002 group, and the miR-7-5p mimic + TFF3 plasmid + LY294002 group were higher than those in the NC group, the miR-7-5p mimic group and the miR-7-5p mimic + TFF3 plasmid group, respectively. Accordingly, the expression level of TFF3 was downregulated and the proliferation and migration ability of the cells was downregulated. The present study demonstrates that overexpressed miR-7-5p may inhibit the proliferation and migration of LS174T cells by targeting the expression of TFF3 via inhibiting the PI3K/Akt signalling pathway. The PI3K/Akt signalling pathway may exert a feedback regulation effect on miR-7-5p, inhibiting the activity of this signalling pathway, which increases the miR-7-5p expression levels and further enhances the effects of miR-7-5p on cell proliferation and migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app