Add like
Add dislike
Add to saved papers

EPR Line Shifts and Line Shape Changes Due to Spin Exchange Between Nitroxide Free Radicals in Liquids 10. Spin-Exchange Frequencies of the Order of the Nitrogen Hyperfine Interaction: A Hypothesis.

The behavior of Electron paramagnetic resonance spectra due to 15 N and 14 N nitroxide free radicals undergoing spin exchange in liquids at high frequencies ωex , of the same order of magnitude as the nitrogen hyperfine coupling constant A 0 is investigated. The well known features are reconfirmed: (1) at low values of ωex where the lines broaden, shift toward the center of the spectrum, and change shape due to the introduction of a resonance of the form of a dispersion component; (2) at values of ωex comparable to A 0 , the line merge into one; and (3) at values much larger than A 0 , the merged line narrows. It is found that each line of a spectrum may be decomposed into an admixture of a single absorption and a single dispersion component of Lorentzian shape. These two- or three-line absorption-dispersion admixtures, for 15 N and 14 N, respectively, retain their individual identities even after the spectrum has merged and has begun to narrow. For both isotopes, the average broadening and integrated intensities are equal to the predictions of perturbation theory although, in the case of 14 N the outer lines broaden faster than the central line and intensity moves from the outer lines to the center line. In fact, the outer line intensity becomes zero and then negative at higher values of ωex which is compensated by the center line becoming more intense than the overall integrated intensity. For both isotopes, the dispersion components and the line shift depart from the perturbation prediction. The results are presented in terms of measurable quantities normalized to A 0 so that they may be applied to any two- or three-line spectrum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app