Add like
Add dislike
Add to saved papers

Generation of octave-spanning mid-infrared pulses from cascaded second-order nonlinear processes in a single crystal.

Scientific Reports 2017 September 12
We report on experimental generation of a 6.8 μJ laser pulse spanning from 1.8 to 4.2 μm from cascaded second-order nonlinear processes in a 0.4-mm BiB3O6 (BIBO) crystal. The nonlinear processes are initiated by intra-pulse difference frequency generation (DFG) using spectrally broadened Ti:Sapphire spectrum, followed by optical parametric amplification (OPA) of the DFG pulse. The highest energy, 12.6 μJ, is achieved in a 0.8-mm BIBO crystal with a spectrum spanning from 1.8 to 3.5 μm. Such cascaded nonlinear processes are enabled by the broadband pump and the coincident phase matching angle of DFG and OPA. The spectrum is initiated from the DFG process and is thus expected to have passive stable carrier-envelope phase, which can be used to seed either a chirped pulse amplifier (CPA) or an optical parametric chirped pulse amplifier (OPCPA) for achieving high-energy few-cycle mid-infrared pulses. Such cascaded second-order nonlinear processes can be found in many other crystals such as KTA, which can extend wavelengths further into mid-infrared. We achieved a 0.8 μJ laser pulse spanning from 2.2 to 5.0 μm in KTA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app