Add like
Add dislike
Add to saved papers

The Cholangiocyte Adenosine-IL-6 Axis Regulates Survival During Biliary Cirrhosis.

Gene Expression 2017 November 28
Epithelial response to injury is critical to the pathogenesis of biliary cirrhosis, and IL-6 has been suggested as a mediator of this phenomenon. Several liver cell types can secrete IL-6 following activation by various signaling molecules including circulating adenosine. The aims of this study were to assess whether adenosine can induce IL-6 secretion by cholangiocytes via the A2b adenosine receptor (A2bAR) and to determine the effect of A2bAR-sensitive IL-6 release on injury response in biliary cirrhosis. Human normal cholangiocyte H69 cells were used for in vitro studies to determine the mechanism by which adenosine and the A2bAR induce release of IL-6. In vivo, control and A2bAR-deficient mice were used to determine the roles of A2bAR-sensitive IL-6 release in biliary cirrhosis induced by common bile duct ligation (BDL). Additionally, the response to exogenous IL-6 was assessed in C57BL/6 and A2bAR-deficient mice. Adenosine induced IL-6 mRNA expression and protein secretion via A2bAR activation. Although activation of A2bAR induced cAMP and intracellular Ca2+ signals, only the Ca2+ signals were linked to IL-6 upregulation. After BDL, A2bAR-deficient mice have impaired survival, which is further impaired by exogenous IL-6; however, decreased survival is not due to changes in fibrosis and no changes in inflammatory cells. Exogenous IL-6 is associated with the increased presence of bile infarcts. Extracellular adenosine induces cholangiocyte IL-6 release via the A2bAR. This signaling pathway is important in the pathogenesis of injury response in biliary cirrhosis but does not alter fibrosis. Adenosine upregulates IL-6 release by cholangiocytes via the A2bAR in a calcium-sensitive fashion. Mice deficient in A2bAR experience impaired survival after biliary cirrhosis induced by common bile duct ligation independent of changes in fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app