Add like
Add dislike
Add to saved papers

Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study.

Pediatric Pulmonology 2017 November
OBJECTIVE: Nasal high-frequency oscillatory ventilation (nHFOV) is a novel mode of non-invasive ventilation used in neonates. However, upper airway obstructions due to viscous secretions have been described as specific adverse effects. We hypothesized that high-frequency oscillations reduce air humidity in the oropharynx, resulting in upper airway desiccation. Therefore, we aimed to investigate the effects of nHFOV ventilatory settings on oropharyngeal gas conditions.

METHODS: NHFOV or nasal continuous positive airway pressure (nCPAP) was applied, along with heated humidification, to a previously established neonatal bench model that simulates oropharyngeal gas conditions during spontaneous breathing through an open mouth. A digital thermo-hygro sensor measured oropharyngeal temperature (T) and humidity at various nHFOV frequencies (7, 10, 13 Hz), amplitudes (10, 20, 30 cmH2 O), and inspiratory-to-expiratory (I:E) ratios (25:75, 33:66, 50:50), and also during nCPAP.

RESULTS: Relative humidity was always >99%, but nHFOV resulted in lower mean T and absolute humidity (AH) in comparison to nCPAP (P < 0.001). Specifically, decreasing the nHFOV frequency and increasing nHFOV amplitude caused a decline in T and AH (P < 0.001). Mean T and AH were highest during nCPAP (T 34.8 ± 0.6°C, AH 39.3 ± 1.3 g · m-3 ) and lowest during nHFOV at a frequency of 7 Hz and an amplitude of 30 cmH2 O (T 32.4 ± 0.3°C, AH 34.7 ± 0.5 g · m-3 ). Increasing the I:E ratio also reduced T and AH (P = 0.03).

CONCLUSION: Intensified nHFOV settings with low frequencies, high amplitudes, and high I:E ratios may place infants at an increased risk of upper airway desiccation. Future studies should investigate strategies to optimize heated humidification during nHFOV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app