Add like
Add dislike
Add to saved papers

Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer.

BBA Clinical 2017 December
We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase) and their effects on patients with breast cancer (BC). In the Metabric dataset (n = 2059, cBioPortal), SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53 , PIK3CA , and CDH1 . These genomic alterations constitute a signature (SigMut) that significantly correlates with reductions in overall survival (OS) in BC patients (n = 1980; p = 1.081e - 6). Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs). These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD) and backward (BWD) stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD) and a 50-gene (SigBWD) signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e - 11 for SigFWD; p = 1.06e - 10, for SigBWD) and TCGA cohort (n = 817; p = 4.53e - 4 for SigFWD and p = 0.00525 for SigBWD). After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297), SigBWD (HR 1.25, p = 0.0263), and likely SigFWD (HR 1.17, p = 0.062) remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER -, Her2-enriched, basal-like, and claudin-low BCs compared to ER + and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app